Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Acta Biomater ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621600

RESUMO

Bacterial infection remains a significant problem associated with orthopaedic surgeries leading to surgical site infection (SSI). This unmet medical need can become an even greater complication when surgery is due to malignant bone tumor. In the present study, we evaluated in vitro titanium (Ti) implants subjected to gallium (Ga) and silver (Ag)-doped thermochemical treatment as strategy to prevent SSI and improve osteointegration in bone defects caused by diseases such as osteoporosis, bone tumor, or bone metastasis. Firstly, as Ga has been reported to be an osteoinductive and anti-resorptive agent, its performance in the mixture was proved by studying human mesenchymal stem cells (hMSC) and pre-osteoclasts (RAW264.7) behaviour. Then, the antibacterial potential provided by Ag was assessed by resembling "The Race for the Surface" between hMSC and Pseudomonas aeruginosa in two co-culture methods. Moreover, the presence of quorum sensing molecules in the co-culture was evaluated. The results highlighted the suitability of the mixture to induce osteodifferentiation and reduce osteoclastogenesis in vitro. Furthermore, the GaAg surface promoted strong survival rate and retained osteoinduction potential of hMSCs even after bacterial inoculation. Therefore, GaAg-modified titanium may be an ideal candidate to repair bone defects caused by excessive bone resorption, in addition to preventing SSI. STATEMENT OF SIGNIFICANCE: This article provides important insights into titanium for fractures caused by osteoporosis or bone metastases with high incidence in surgical site infection (SSI) because in this situation bacterial infection can become a major disaster. In order to solve this unmet medical need, we propose a titanium implant modified with gallium and silver to improve osteointegration, reduce bone resorption and avoid bacterial infection. For that aim, we study osteoblast and osteoclast behavior with the main novelty focused on the antibacterial evaluation. In this work, we recreate "the race for the surface" in long-term experiments and study bacterial virulence factors (quorum sensing). Therefore, we believe that our article could be of great interest, providing a great impact on future orthopedic applications.

2.
Bioessays ; 46(5): e2300223, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522027

RESUMO

Ageing causes progressive decline in metabolic, behavioural, and physiological functions, leading to a reduced health span. The extracellular matrix (ECM) is the three-dimensional network of macromolecules that provides our tissues with structure and biomechanical resilience. Imbalance between damage and repair/regeneration causes the ECM to undergo structural deterioration with age, contributing to age-associated pathology. The ECM 'Ageing Across the Life Course' interdisciplinary research network (ECMage) was established to bring together researchers in the United Kingdom, and internationally, working on the emerging field of ECM ageing. Here we report on a consultation at a joint meeting of ECMage and the Medical Research Council / Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, held in January 2023, in which delegates analysed the key questions and research opportunities in the field of ECM ageing. We examine fundamental biological questions, enabling technologies, systems of study and emerging in vitro and in silico models, alongside consideration of the broader challenges facing the field.

3.
Adv Mater ; : e2310789, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253339

RESUMO

Conventional osteogenic platforms utilize active growth factors to repair bone defects that are extensive in size, but they can adversely affect patient health. Here, an unconventional osteogenic platform is reported that functions by promoting capture of inactive osteogenic growth factor molecules to the site of cell growth for subsequent integrin-mediated activation, using a recombinant fragment of latent transforming growth factor beta-binding protein-1 (rLTBP1). It is shown that rLTBP1 binds to the growth-factor- and integrin-binding domains of fibronectin on poly(ethyl acrylate) surfaces, which immobilizes rLTBP1 and promotes the binding of latency associated peptide (LAP), within which inactive transforming growth factor beta 1 (TGF-ß1) is bound. rLTBP1 facilitates the interaction of LAP with integrin ß1 and the subsequent mechanically driven release of TGF-ß1 to stimulate canonical TGF-ß1 signaling, activating osteogenic marker expression in vitro and complete regeneration of a critical-sized bone defect in vivo.

4.
Biomater Adv ; 158: 213766, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232578

RESUMO

Medical implant-associated infections pose a significant challenge to modern medicine, with aseptic loosening and bacterial infiltration being the primary causes of implant failure. While nanostructured surfaces have demonstrated promising antibacterial properties, the translation of their efficacy from 2D to 3D substrates remains a challenge. Here, we used scalable alkaline etching to fabricate nanospike and nanonetwork topologies on 2D and laser powder-bed fusion printed 3D titanium. The fabricated surfaces were compared with regard to their antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and mesenchymal stromal cell responses with and without the presence of bacteria. Finite elemental analysis assessed the mechanical properties and permeability of the 3D substrate. Our findings suggest that 3D nanostructured surfaces have potential to both prevent implant infections and allow host cell integration. This work represents a significant step towards developing effective and scalable fabrication methods on 3D substrates with consistent and reproducible antibacterial activity, with important implications for the future of medical implant technology.


Assuntos
Aderência Bacteriana , Titânio , Titânio/farmacologia , Técnicas de Cocultura , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1888): 20220221, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37661739

RESUMO

The role of the gut microbiota in determining body fatness has been a prominent area of research and has received significant public attention. Based largely on animal studies, recent attempts to translate these findings into interventions in humans have not been successful. This review will outline the key mouse research that initiated this area of study, examine whether those results warranted the initial enthusiasm and progress into human studies, and examine whether later follow-up research supported earlier conclusions. It will look at whether the absence of a gut microbiota protects germ-free mice from obesity, whether microbiota can transfer obesity into germ-free mice, the evidence for the role of immune system activation as a causal mechanism linking the gut microbiota to body weight, and consider the evidence for effects of individual bacterial species. Finally, it will examine the outcomes of randomized controlled trials of microbiota transfer in human participants that have not shown effects on body weight. With a more critical reading, early studies did not show as large an effect as first appeared and later research, including human trials, has failed to support a role of the gut microbiota in shaping body weight. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Obesidade/etiologia , Peso Corporal , Tecido Adiposo
6.
Artigo em Inglês | MEDLINE | ID: mdl-37718477

RESUMO

There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such as mesenchymal stromal cells (MSCs), into a potential bone-graft material could help to fulfill clinical demand. However, osteogenesis of MSCs can typically require long culture periods that are impractical in a clinical setting and can lead to significant cost. Investigation into strategies that optimize cell production is essential. Here, we use the piezoelectric copolymer poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE), functionalized with a poly(ethyl acrylate) (PEA) coating that drives fibronectin network formation, to enhance MSC adhesion and to present growth factors in the solid phase. Dynamic electrical cues are then incorporated, via a nanovibrational bioreactor, and the MSC response to electromechanical stimulation is investigated.

7.
ACS Appl Bio Mater ; 6(10): 4290-4303, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37721636

RESUMO

Multifunctional biohybrid nanofibers (NFs) that can simultaneously drive various cellular activities and confer antibacterial properties are considered desirable in producing advanced wound healing materials. In this study, a bionanohybrid formulation was processed as a NF wound dressing to stimulate the adhesion and proliferation of fibroblast and endothelial cells that play a major role in wound healing. Polyacrylonitrile (PAN) electrospun NFs were hydrolyzed using NaOH and biofunctionalized with l-carnosine (CAR), a dipeptide which could later biosynthesize zinc oxide (ZnO) nanoparticles (NPs) on the NFs surface. The morphological study verified that ZnO NPs are uniformly distributed on the surface of CAR/PAN NFs. Through EDX and XRD analysis, it was validated that the NPs are composed of ZnO and/or ZnO/Zn(OH)2. The presence of CAR and ZnO NPs brought about a superhydrophilicity effect and notably raised the elastic modulus and tensile strength of Zn-CAR/PAN NFs. While CAR ligands were shown to improve the viability of fibroblast (L929) and endothelial (HUVEC) cells, ZnO NPs lowered the positive impact of CAR, most likely due to their repulsive negative surface charge. A scratch assay verified that CAR/PAN NFs and Zn-CAR/PAN NFs aided HUVEC migration more than PAN NFs. Also, an antibacterial assay implied that CAR/PAN NFs and Zn-CAR/PAN NFs are significantly more effective in inhibiting Staphylococcus aureus (S. aureus) than neat PAN NFs are (1000 and 500%, respectively). Taken together, compared to the neat PAN NFs, CAR/PAN NFs with and without the biosynthesized ZnO NPs can support the cellular activities of relevance for wound healing and inactivate bacteria.


Assuntos
Carnosina , Nanofibras , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Carnosina/farmacologia , Nanofibras/química , Staphylococcus aureus , Biomimética , Células Endoteliais , Cicatrização , Nanopartículas/química , Antibacterianos/química
8.
Microb Genom ; 9(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428148

RESUMO

The human skin microbiome represents a variety of complex microbial ecosystems that play a key role in host health. Molecular methods to study these communities have been developed but have been largely limited to low-throughput quantification and short amplicon-based sequencing, providing limited functional information about the communities present. Shotgun metagenomic sequencing has emerged as a preferred method for microbiome studies as it provides more comprehensive information about the species/strains present in a niche and the genes they encode. However, the relatively low bacterial biomass of skin, in comparison to other areas such as the gut microbiome, makes obtaining sufficient DNA for shotgun metagenomic sequencing challenging. Here we describe an optimised high-throughput method for extraction of high molecular weight DNA suitable for shotgun metagenomic sequencing. We validated the performance of the extraction method, and analysis pipeline on skin swabs collected from both adults and babies. The pipeline effectively characterised the bacterial skin microbiota with a cost and throughput suitable for larger longitudinal sets of samples. Application of this method will allow greater insights into community compositions and functional capabilities of the skin microbiome.


Assuntos
Metagenômica , Microbiota , Adulto , Humanos , DNA Bacteriano/genética , Metagenômica/métodos , Peso Molecular , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/genética , Bactérias/genética , Microbiota/genética , DNA
9.
Gastro Hep Adv ; 2(5): 666-675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469521

RESUMO

Background and Aims: Necrotizing enterocolitis (NEC) is a life-threatening disease and the most common gastrointestinal emergency in premature infants. Accurate early diagnosis is challenging. Modified Bell's staging is routinely used to guide diagnosis, but early diagnostic signs are nonspecific, potentially leading to unobserved disease progression, which is problematic given the often rapid deterioration observed. We investigated fecal cytokine levels, coupled with gut microbiota profiles, as a noninvasive method to discover specific NEC-associated signatures that can be applied as potential diagnostic markers. Methods: Premature babies born below 32 weeks of gestation were admitted to the 2-site neonatal intensive care unit (NICU) of Imperial College hospitals (St. Mary's or Queen Charlotte's & Chelsea) between January 2011 and December 2012. During the NICU stay, expert neonatologists grouped individuals by modified Bell's staging (healthy, NEC1, NEC2/3) and fecal samples from diapers were collected consecutively. Microbiota profiles were assessed by 16S rRNA gene amplicon sequencing and cytokine concentrations were measured by V-Plex multiplex assays. Results: Early evaluation of microbiota profiles revealed only minor differences. However, at later time points, significant changes in microbiota composition were observed for Bacillota (adj. P = .0396), with Enterococcus being the least abundant in Bell stage 2/3 NEC. Evaluation of fecal cytokine levels revealed significantly higher concentrations of IL-1α (P = .045), IL-5 (P = .0074), and IL-10 (P = .032) in Bell stage 1 NEC compared to healthy individuals. Conclusion: Differences in certain fecal cytokine profiles in patients with NEC indicate their potential use as diagnostic biomarkers to facilitate earlier diagnosis. Additionally, associations between microbial and cytokine profiles contribute to improving knowledge about NEC pathogenesis.

11.
Mater Today Bio ; 20: 100641, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37179535

RESUMO

Collagen type I lacks affinity for growth factors (GFs) and yet it is clinically used to deliver bone morphogenic protein 2 (BMP-2), a potent osteogenic growth factor. To mitigate this lack of affinity, supra-physiological concentrations of BMP-2 are loaded in collagen sponges leading to uncontrolled BMP-2 leakage out of the material. This has led to important adverse side effects such as carcinogenesis. Here, we design recombinant dual affinity protein fragments, produced in E. Coli, which contain two regions, one that spontaneously binds to collagen and a second one that binds BMP-2. By adding the fragment to collagen sponges, BMP-2 is sequestered enabling solid phase presentation of BMP-2. We demonstrate osteogenesis in vivo with ultra-low doses of BMP-2. Our protein technology enhances the biological activity of collagen without using complex chemistries or changing the manufacturing of the base material and so opens a pathway to clinical translation.

12.
Adv Healthc Mater ; 12(17): e2202110, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36938891

RESUMO

Tissue engineering aims at replicating tissues and organs to develop applications in vivo and in vitro. In vivo, by engineering artificial constructs using functional materials and cells to provide both physiological form and function. In vitro, by engineering three-dimensional (3D) models to support drug discovery and enable understanding of fundamental biology. 3D culture constructs mimic cell-cell and cell-matrix interactions and use biomaterials seeking to increase the resemblance of engineered tissues with its in vivo homologues. Native tissues, however, include complex architectures, with compartmentalized regions of different properties containing different types of cells that can be captured by multicompartment constructs. Recent advances in fabrication technologies, such as micropatterning, microfluidics or 3D bioprinting, have enabled compartmentalized structures with defined compositions and properties that are essential in creating 3D cell-laden multiphasic complex architectures. This review focuses on advances in engineered multicompartment constructs that mimic tissue heterogeneity. It includes multiphasic 3D implantable scaffolds and in vitro models, including systems that incorporate different regions emulating in vivo tissues, highlighting the emergence and relevance of 3D bioprinting in the future of biological research and medicine.


Assuntos
Bioimpressão , Impressão Tridimensional , Hidrogéis/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Tecidos Suporte/química
13.
Biomater Adv ; 148: 213370, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931082

RESUMO

Tissue engineered cartilage for external ear reconstruction of congenital deformities, such as microtia or resulting from trauma, remains a significant challenge for plastic and reconstructive surgeons. Current strategies involve harvesting autologous costal cartilage or expanding autologous chondrocytes ex vivo. However, these procedures often lead to donor site morbidity and a cell source with limited expansion capacity. Stromal stem cells such as perivascular stem cells (pericytes) offer an attractive alternative cell source, as they can be isolated from many human tissues, readily expanded in vitro and possess chondrogenic differentiation potential. Here, we successfully isolate CD146+ pericytes from the microtia remnant from patients undergoing reconstructive surgery (Microtia pericytes; MPs). Then we investigate their chondrogenic potential using the polymer poly(ethyl acrylate) (PEA) to unfold the extracellular matrix protein fibronectin (FN). FN unfolding exposes key growth factor (GF) and integrin binding sites on the molecule, allowing tethering of the chondrogenic GF transforming growth factor beta 1 (TGFß1). This system leads to solid-phase, matrix-bound, GF presentation in a more physiological-like manner than that of typical chondrogenic induction media (CM) formulations that tend to lead to off-target effects. This simple and controlled material-based approach demonstrates similar chondrogenic potential to CM, while minimising proclivity toward hypertrophy, without the need for complex induction media formulations.


Assuntos
Microtia Congênita , Humanos , Microtia Congênita/cirurgia , Pericitos , Condrogênese , Fibronectinas , Cartilagem
14.
Nat Commun ; 14(1): 1349, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906612

RESUMO

Preterm infants with very low birthweight are at serious risk for necrotizing enterocolitis. To functionally analyse the principles of three successful preventive NEC regimens, we characterize fecal samples of 55 infants (<1500 g, n = 383, female = 22) longitudinally (two weeks) with respect to gut microbiome profiles (bacteria, archaea, fungi, viruses; targeted 16S rRNA gene sequencing and shotgun metagenomics), microbial function, virulence factors, antibiotic resistances and metabolic profiles, including human milk oligosaccharides (HMOs) and short-chain fatty acids (German Registry of Clinical Trials, No.: DRKS00009290). Regimens including probiotic Bifidobacterium longum subsp. infantis NCDO 2203 supplementation affect microbiome development globally, pointing toward the genomic potential to convert HMOs. Engraftment of NCDO 2203 is associated with a substantial reduction of microbiome-associated antibiotic resistance as compared to regimens using probiotic Lactobacillus rhamnosus LCR 35 or no supplementation. Crucially, the beneficial effects of Bifidobacterium longum subsp. infantis NCDO 2203 supplementation depends on simultaneous feeding with HMOs. We demonstrate that preventive regimens have the highest impact on development and maturation of the gastrointestinal microbiome, enabling the establishment of a resilient microbial ecosystem that reduces pathogenic threats in at-risk preterm infants.


Assuntos
Microbioma Gastrointestinal , Recém-Nascido Prematuro , Lactente , Recém-Nascido , Humanos , Feminino , RNA Ribossômico 16S/genética , Ecossistema , Intestinos , Fezes/microbiologia , Bifidobacterium longum subspecies infantis/genética
15.
ACS Appl Nano Mater ; 6(4): 2549-2559, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36875180

RESUMO

Nature-inspired antimicrobial surfaces and antimicrobial peptides (AMPs) have emerged as promising strategies to combat implant-associated infections. In this study, a bioinspired antimicrobial peptide was functionalized onto a nanospike (NS) surface by physical adsorption with the aim that its gradual release into the local environment would enhance inhibition of bacterial growth. Peptide adsorbed on a control flat surface exhibited different release kinetics compared to the nanotopography, but both surfaces showed excellent antibacterial properties. Functionalization with peptide at micromolar concentrations inhibited Escherichia coli growth on the flat surface, Staphylococcus aureus growth on the NS surface, and Staphylococcus epidermidis growth on both the flat and NS surfaces. Based on these data, we propose an enhanced antibacterial mechanism whereby AMPs can render bacterial cell membranes more susceptible to nanospikes, and the membrane deformation induced by nanospikes can increase the surface area for AMPs membrane insertion. Combined, these effects enhance bactericidal activity. Since functionalized nanostructures are highly biocompatible with stem cells, they make promising candidates for next generation antibacterial implant surfaces.

16.
Nat Commun ; 14(1): 753, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765065

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that are of considerable clinical potential in transplantation and anti-inflammatory therapies due to their capacity for tissue repair and immunomodulation. However, MSCs rapidly differentiate once in culture, making their large-scale expansion for use in immunomodulatory therapies challenging. Although the differentiation mechanisms of MSCs have been extensively investigated using materials, little is known about how materials can influence paracrine activities of MSCs. Here, we show that nanotopography can control the immunomodulatory capacity of MSCs through decreased intracellular tension and increasing oxidative glycolysis. We use nanotopography to identify bioactive metabolites that modulate intracellular tension, growth and immunomodulatory phenotype of MSCs in standard culture and during larger scale cell manufacture. Our findings demonstrate an effective route to support large-scale expansion of functional MSCs for therapeutic purposes.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Diferenciação Celular , Imunomodulação , Fenótipo
17.
Stem Cells Dev ; 32(3-4): 47-59, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36355611

RESUMO

Mesenchymal stem cells (MSCs) are well known for their regenerative potential. Even though the ability of MSCs to proliferate and differentiate has been studied extensively, there remains much to learn about the signaling mechanisms and pathways that control proliferation and influence the differentiation phenotype. In recent years, there has been growing evidence for the utility of non-neuronal cholinergic signaling systems and that acetylcholine (ACh) plays an important ubiquitous role in cell-to-cell communication. Indeed, cholinergic signaling is hypothesized to occur in stem cells and ACh synthesis, as well as in ACh receptor (AChR) expression, has been identified in several stem cell populations, including MSCs. Furthermore, AChRs have been found to influence MSC regenerative potential. In humans, there are two major classes of AChRs, muscarinic AChRs and nicotinic AChRs, with each class possessing several subtypes or subunits. In this review, the expression and function of AChRs in different types of MSC are summarized with the aim of highlighting how AChRs play a pivotal role in regulating MSC regenerative function.


Assuntos
Células-Tronco Mesenquimais , Receptores Colinérgicos , Humanos , Colinérgicos , Nicotina , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo
18.
Mater Today Bio ; 16: 100367, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35937570

RESUMO

Mesenchymal stem cell (MSC)-based tissue engineering strategies are of interest in the field of bone tissue regenerative medicine. MSCs are commonly investigated in combination with growth factors (GFs) and biomaterials to provide a regenerative environment for the cells. However, optimizing how biomaterials interact with MSCs and efficiently deliver GFs, remains a challenge. Here, via plasma polymerization, tissue culture plates are coated with a layer of poly (ethyl acrylate) (PEA), which is able to spontaneously permit fibronectin (FN) to form fibrillar nanonetworks. However, vitronectin (VN), another important extracellular matrix (ECM) protein forms multimeric globules on the polymer, thus not displaying functional groups to cells. Interestingly, when FN and VN are co-absorbed onto PEA surfaces, VN can be entrapped within the FN fibrillar nanonetwork in the monomeric form providing a heterogeneous, open ECM network. The combination of FN and VN promote MSC adhesion and leads to enhanced GF binding; here we demonstrate this with bone morphogenetic protein-2 (BMP2). Moreover, MSC differentiation into osteoblasts is enhanced, with elevated expression of osteopontin (OPN) and osteocalcin (OCN) quantified by immunostaining, and increased mineralization observed by von Kossa staining. Osteogenic intracellular signalling is also induced, with increased activity in the SMAD pathway. The study emphasizes the need of recapitulating the complexity of native ECM to achieve optimal cell-material interactions.

19.
Adv Healthc Mater ; 11(20): e2200964, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933595

RESUMO

Living biointerfaces are a new class of biomaterials combining living cells and polymeric matrices that can act as biologically active and instructive materials that host and provide signals to surrounding cells. Here, living biomaterials based on Lactococcus lactis to control hematopoietic stem cells in 2D surfaces and 3D hydrogels are introduced. L. lactis is modified to express C-X-C motif chemokine ligand 12 (CXCL12), thrombopoietin (TPO), vascular cell adhesion protein 1 (VCAM1), and the 7th-10th type III domains of human plasma fibronectin (FN III7-10 ), in an attempt to mimic ex vivo the conditions of the human bone marrow. These results suggest that living biomaterials that incorporate bacteria expressing recombinant CXCL12, TPO, VCAM1, and FN in both 2D systems direct hematopoietic stem and progenitor cells (HSPCs)-bacteria interaction, and in 3D using hydrogels functionalized with full-length human plasma fibronectin allow for a notable expansion of the CD34+ /CD38- /CD90+ HSPC population compared to the initial population. These results provide a strong evidence based on data that suggest the possibility of using living materials based on genetically engineered bacteria for the ex-vivo expansion of HSPC with eventual practical clinical applications in HSPCs transplantation for hematological disorders.


Assuntos
Fibronectinas , Trombopoetina , Humanos , Fibronectinas/metabolismo , Trombopoetina/metabolismo , Materiais Biocompatíveis/metabolismo , Ligantes , Células-Tronco Hematopoéticas , Hidrogéis/metabolismo
20.
Cell Mol Life Sci ; 79(7): 386, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35760917

RESUMO

The gut microbiota plays a central role in regulating host metabolism. While substantial progress has been made in discerning how the microbiota influences host functions post birth and beyond, little is known about how key members of the maternal gut microbiota can influence feto-placental growth. Notably, in pregnant women, Bifidobacterium represents a key beneficial microbiota genus, with levels observed to increase across pregnancy. Here, using germ-free and specific-pathogen-free mice, we demonstrate that the bacterium Bifidobacterium breve UCC2003 modulates maternal body adaptations, placental structure and nutrient transporter capacity, with implications for fetal metabolism and growth. Maternal and placental metabolome were affected by maternal gut microbiota (i.e. acetate, formate and carnitine). Histological analysis of the placenta confirmed that Bifidobacterium modifies placental structure via changes in Igf2P0, Dlk1, Mapk1 and Mapk14 expression. Additionally, B. breve UCC2003, acting through Slc2a1 and Fatp1-4 transporters, was shown to restore fetal glycaemia and fetal growth in association with changes in the fetal hepatic transcriptome. Our work emphasizes the importance of the maternal gut microbiota on feto-placental development and sets a foundation for future research towards the use of probiotics during pregnancy.


Assuntos
Microbioma Gastrointestinal , Placenta , Animais , Bifidobacterium , Feminino , Desenvolvimento Fetal , Humanos , Camundongos , Nutrientes , Placenta/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...